04/05/2013

Przeszukiwanie przestrzeni stanów 3

Home

Post ten stanowi fragment serii na temat przeszukiwania przestrzeni stanów.

Zgodnie z obietnicą dzisiaj napiszę jak zaimplementować klasę Fringe i jakie to może mieć znaczenie. Dla przypomnienia potrzebujemy stworzyć kontener, który będzie przechowywał stany, które musimy jeszcze odwiedzić. Wynika to z tego, że przestrzeń stanów ma strukturę drzewiastą albo w ogólności grafową jeśli możliwe jest wrócenie do już odwiedzonego stanu. Węzły tego drzewa/grafu możemy odwiedzać w różnej kolejności, a co z tym związane w różnej kolejności je produkować. Kolejność ta zależy właśnie od implementacji klasy Fringe.

Zacznijmy od dwóch przykładowych implementacji.

public class DFSFringe<TCustomData> : Fringe<TCustomData>
{
    private readonly Stack<State<TCustomData>> _fringe = new Stack<State<TCustomData>>();

    public override int Count
    {
            get { return _fringe.Count; }
    }

    public override bool IsEmpty
    {
        get { return _fringe.Count == 0; }
    }

    public override State<TCustomData> Next
    {
        get { return _fringe.Pop(); }
    }

    public override void Add(State<TCustomData> s)
    {
        _fringe.Push(s);
    }
}

public class BFSFringe<TCustomData> : Fringe<TCustomData>
{
    private readonly Queue<State<TCustomData>> _fringe = new Queue<State<TCustomData>>();

    public override int Count
    {
            get { return _fringe.Count; }
    }

    public override bool IsEmpty
    {
        get { return _fringe.Count == 0; }
    }

    public override State<TCustomData> Next
    {
        get { return _fringe.Dequeue(); }
    }

    public override void Add(State<TCustomData> s)
    {
        _fringe.Enqueue(s);
    }
}

DFS oraz BFS to skróty od Depth-first search czyli przeszukiwania w głąb oraz Breadth-first search czyli przeszukiwania wszerz. DFSFringe opiera się na stosie, a BFSFringe na kolejce. Ma to ogromne znaczenie.

Zastosowanie stosu powoduje, że rozwijany jest najgłębszy jeszcze nie rozwinięty węzeł - stan, a jego następniki ustawiane są na początku zbioru stanów. Natomiast użycie kolejki powoduje, że rozwijany jest najpłytszy jeszcze nie rozwinięty węzeł, a jego następniki ustawiane są na końcu zbioru stanów.

DFS będzie więc, przeważnie, trzymał mniej stanów w pamięci niż BFS. Przy bardzo szerokich drzewach BFS może być wręcz niepraktyczny z powodu zbyt dużego zapotrzebowania na pamięć. Z drugiej strony, przy bardzo głębokich drzewach,  DFS może tracić czas na przeszukiwanie kolejnych gałęzi podczas gdy rozwiązanie będzie znajdować się dość płytko tj. niedaleko korzenia.

DFSFringe, BFSFringe to zresztą tylko dwa przypadki z wielu. Inne podejścia to min.: przeszukiwanie z równomiernym kosztem (ang. uniform-cost search), przeszukiwanie z ograniczoną głębokością (ang. depth-limited search), iteracyjne pogłębianie (ang. iterative deepening) czy przeszukiwanie zgodnie z zasadą najlepszy wpierw (an.g best-first search).

W kolejnym poście w końcu ;) rozwiążemy problem ze statkami.

0 comments:

Post a comment